Bootstrapping INAR Models

نویسندگان

  • Carsten Jentsch
  • Christian Weiß
چکیده

Integer-valued autoregressive (INAR) time series form a very useful class of processes suitable to model time series of counts. In the common formulation of Du and Li (1991, JTSA), INAR models of order p share the autocorrelation structure with classical autoregressive time series. This fact allows to estimate the INAR coefficients, e.g., by Yule-Walker estimators. However, contrary to the AR case, consistent estimation of the model coefficients turns out to be not sufficient to compute proper ‘INAR residuals’ to formulate a valid model-based bootstrap scheme. In this paper, we propose a general INAR-type bootstrap procedure. Based on mild regularity conditions and suitable meta assumptions, we prove bootstrap consistency of our procedure for statistics belonging to the class of functions of generalized means. In particular, we discuss parametric and semi-parametric implementations of the INAR bootstrap scheme. The latter approach is based on a semi-parametric estimator suggested by Drost, van den Akker and Werker (2009, JRSSB) to estimate jointly the INAR coefficients and the distribution of the innovations. In an extensive simulation study, we provide numerical evidence of our theoretical findings and illustrate the superiority of the proposed INAR bootstrap over some obvious competitors. We illustrate our method by an application to a real data set about iceberg orders for the Lufthansa stock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of INAR(p) models using bootstrap

In this paper we investigate bootstrap techniques applied to the estimation of the thinning parameters in INAR(p) models. We propose a new bootstrap approach based on sieve bootstrap. The approach is then applied to the Yule-Walker estimator of the thinning parameters. Monte Carlo experiments are carried out to valuate the performance of bootstrap estimator and the superiority of our proposal i...

متن کامل

Modelling Time Series of Counts: an Inar Approach

Abstract. Time series of counts arise when the interest lies on the number of certain events occurring during a specified time interval. Many of these data sets are characterized by low counts, asymmetric distributions, excess zeros, over dispersion, ruling out normal approximations. Several approaches and diversified models that explicitly account for the discreteness of the data have been con...

متن کامل

Integer Valued AR Processes with Explanatory Variables

Integer valued AR (INAR) processes are perfectly suited for modelling count data. We consider the inclusion of explanatory variables into the INAR model to extend the applicability of INAR models and give an alternative to Poisson regression models. An efficient MCMC algorithm is constructed to analyze the model and incorporates both explanatory variable and order selection. The methodology is ...

متن کامل

Forecasting in Inar ( 1 ) Model

• In this work we consider the problem of forecasting integer-valued time series, modelled by the INAR(1) process introduced by McKenzie (1985) and Al-Osh and Alzaid (1987). The theoretical properties and practical applications of INAR and related processes have been discussed extensively in the literature but there is still some discussion on the problem of producing coherent, i.e. integer-val...

متن کامل

Stationary solutions for integer-valued autoregressive processes

The purpose of this paper is to introduce and develop a family of Z+-valued autoregressive processes of order p (INAR(p)) by using the generalized multiplication F of van Harn and Steutel (1982). We obtain various distributional and regression properties for these models. A number of stationary INAR(p) processes with specific marginals are presented and are shown to generalize several existing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017